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1. INTRODUCTION

In recent years, several papers have been devoted to best approximating
in some sense the solutions to various types of nonlinear differential and
integro-differential equations (see, for example, [1, 4, 7-9]). These papers are
generally concerned with proving that a best approximation exists and with
showing that an appropriate sequence of best approximations converges to
a solution of the differential or integro-differential equation. In the previously
mentioned references, the best approximation problem is ordinarily nonlinear
and consequently computational techniques are not readily available.

In this paper we propose to reexamine the best approximation problem
as posed in [1,4, 7-9J and discuss alternatives that may result in computa
tionally obtainable best approximations. Although our discussion is limited
to the initial value problem IVP

x(t) = jet, x(t), x(t)),

x(O) = Co, x(O) = C1 ,

(1.1)

on the interval fa = [- ex, ex], the concepts discussed are adaptable to
higher-order differential equations and integrodifferential equations.
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where the vector A = (a2 , ••• , ak) is an element of Ek- 1 , the (k - 1)
dimensional Euclidean space. The best approximation problem (essentially
that of any of the above references) is to find an element peAk*, t) EO Pk
such that

inf sup IpeA, t) - jet, peA, t), peA, t)}
PEPk 1",

= syP I P(A k *, t) - j(t,p(Ak *, t), peAk*, t»i. (2.2)
ex

We designate establishing the existence of a peAk*, t) EO Pk that satisfies (2.2)
to be the best simultaneous approximation problem. If such a peAk*, t) does
exist, then this polynomial is the best simultaneous approximate solution (BAS)
of degree k to the IVP (1.1) on the interval [-ex, ex}.

If yet) is the solution to (1.1) and if {peAk *, t)}~~2 is a sequence of best
approximate solutions, one for each k, then a fundamental question is
whether or not

Hereafter,

lim IIp(A k *, .) - y if", = O.
k-"!·'X)

II h !,l", = sup I h(t)\.
[-ex,"']

(2.3)

(2.4)

References [I, 4, 7-9] all consider this basic question. It should be noted that
in some of these papers, norms other than the Chebyshev norm are
considered. Our attention is restricted to the Chebyshev norm (2.4).

A basic difficulty of the type of approximation described in (2.2) is that if
jet, x, x) is nonlinear in x or x, then (2.2) is a nonlinear approximation
problem; therefore the BAS of degree k is frequently not easily computable,
(see [6]).

Another way of viewing the approximation problem (2.2) is as follows.
Again let A = (a2 , ..• , ak) EO Ek- l , and letp(A, t) = Co + CIt + G2t 2 + ... + Gkt k

be the element of Pie corresponding to the vector A. Then (2.2) may be viewed
as finding the Ale* EO EIe - 1 (if it exists) that minimizes iI G(A, '}!" , where

G(A, t) = peA, t) - f(t, peA, t), peA, t». (2.5)

If {G(A, t)}AEEk_1 is a varisolvent family in the sense of Rice [11], then
classical approximation theory techniques could be employed despite the
fact that G(A, t) may be nonlinear in the parameters (a2 , ... , ak)' We shall
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demonstrate shortly, however, that simple nonlinearities inf(t, x, x) destroy
all possibilities of varisolvence. Thus, little is known as far as computing a
best approximation for fixed k in the sense of (2.2).

In 1969, Olson [10] and Weinstein introduced a possible alternative to the
approximation problem (2.2). Although their work is basically for the
first-order counterpart to (1.1) (some of their examples are for second-order
equations), we will discuss the procedure in terms of (1.1). Let p(A20 , t) =
Co + cIt. Here A20 is the zero vector in El . The first subscript is one more than
the dimension of A20 and corresponds to the class of polynomials P2' and
the second subscript denotes the particular iterate in the algorithm presently
being described.

Solve the linear best approximation problem

inf sup J peA, t) - f(t, p(A20 , t), jJ(A20 , t))J
A EEl lrY.

via the second algorithm of Remes. Let P(A2l , t) be this best approximation,
and set

t
P(A 2l , t) = Co + cIt + I

o
(t - S)P(A21 , s) ds.

Then P(A21 , t) E P2 • Now solve the linear approximation problem

inf sup IpeA, t) - f(t, P(A21 , t), jJ(A21 , t))[.
A EEl lex

Designate by P(A22 , t) this best approximation and let

t
P(A22 , t) = Co + cIt + I

o
(t - S)P(A22 , s) ds.

Again, P(A22 , t) E P 2' Continuing this process results in a sequence
{p(A2n,t)}:~o~P2' Ifa subsequence converges to ap(A2,t)EP2, define
p(A30 , t) = p(A2, t), where now A30 E E2 and p(A30 , t) E P3 • That is, if
A2 = (a22)' then Ago = (a22, 0) E E2 . The algorithm continues in E2 by
now solving the approximation problem

inf sup J peA, t) - f(t, p(A30 , t), jJ(A30 , t))J.
AEE2 lex

Let P(A31 , t) be this best approximation, and again set

P(A 31 , t) = Co + cIt +r(t - s) P(A 31 , s) ds.
o

Thenp(A3l , t) E P3 • Continuing, one obtains a sequence {p(A3n , t)}:=o ~ P3 •
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If a subsequence converges to peA3 , t) EP3' define p(A40 , t) = p(A3 , t),
where if Aa = (.21 23' ( 33), then A40 = (a 23 , a33 , 0).

Continuing this process (assuming convergence) results in a sequence of
polynomials {p(Ak , t)}~=2 withp(Ak , t) EP k •

Obvious questions of interest include: (a) When does the sequence
{p(A kn , t)} ~~o possess a subsequence that converges uniformly to an element
p(Ak , t) of P k? (b) How does p(Ak , t) compare to peAk*, t), the BAS of
degree k? (c) Does a subsequence of {p(Ak , t)}~=2 converge uniformly to the
solution yet) of (Ll), even though the sequences {p(Ak , t)}~=2 and
{peAk*, t)}~=2 may differ? (d) How feasible computationally is the algorithm?
It should be noted in regard to question (d) that one would ordinarily start
the algorithm with k fairly large initially.

Parts of these questions are considered in [10] but for each fixed k these
results depend on the G(A, t) of (2.5) satisfying property Z of degree k - 1
at A* (see Rice [11, p. 3]); that is, if A * E Ek - 1 and if A is any other element
of Ek - 1 , then G(A *, t) - G(A, t) can have at most k - 2 zeros on [-ex, a].
(Again,p(A*, t) andp(A, t) are elements ofPk). It is not likely that property Z
will be satisfied, even if f(t, x, x) is only "mildly" nonlinear

EXAMPLE 1.

xCt) - x2(t) = 1, 1"- = [-ex, n:],

x(O) = x(O) = o.

Let the approximation be from P 2 • Thus every element is of the form
peA, t) = at 2, and A = (a). If A* = (a*) is given then

G(A*, t) - G(A, t) = (a* - a)[2 - (a* + a) t 4 }.

But then G(A *, t) - G(A, t) = 0 for a =1= a* providing a = (2/t 4) - a*.
Thus given an a*, there is atE [-n:, n:] and a corresponding a =1= a* such
that a = (2/(t)4) - a*. That is, there is atE [-0:, n:] and an A =1= A * such
that G(A*, t) - G(A, t) = O. Thus at A* property Z of degree one is
violated.

3. BEHAVIOR OF THE ALGORITHM

In this section, we consider an example that demonstrates the types of
answers to questions (a)-(d) that can be expected. The notation of section
two was employed primarily to identify the types of approximation problems
of this paper with the classical approximation theory problem above (2.5).



70 HENRY AND WIGGINS

For simplicity, some notational changes are now made. If h *(t) (instead of
the previously designated peAk*, t)) satisfies

inf sup [p(t) - jet, pet), P(t))1
PEP" [_",,,]

= sup 1 Pk*(t) - jet, h *(t), Pk*(t))[,
I"

(3.1)

then h *(t) is the best simultaneous approximate solution to the initial value
problem (Ll). Hereafter, h*(t) will be called the BAS of degree k. If
hit) = p(Akn , t) of the previous section, then the algorithm for degree k
of section two becomes

inf sup Ipet) - jet, h n-l(t), Pk n-l(t))[
P~ ~ ,.

= syP [Pkn(t) - jet, h,n-l(t), Pk.n-it))I.
"

(3.2)

If h(t) = peAk , t) of the previous section (that is, h(t) is a cluster point of
the sequence {hit)}:=o}, then under appropriate conditions (Section 4)
pit) is called a simultaneous approximation substitute of degree k, SAS.

Thus the possibly nonlinear approximation problem (3.1) is replaced by
the linear approximation problem (3.2), and we are interested in the various
properties of BAS and SAS.

EXAMPLE 2.

x(t) - tx2(t) = 0, I" = [-ex, ex],

x(O) = 1, x(O) = O.

It can be shown that Example 2 has a unique solution for ex < 2. The
approximation problem (3.1) for k = 2 is then to find an a* that satisfies

inf sup 12a - t(1 + at 2)2 1= sup I 2a* - t(1 + a*t2)2 I, (3.3)
aE~ ~ ~

wh~e P2 = {p(t):p(t) = 1 + at2}.
The algorithm (3.2) for k = 2 is to find the an+l that satisfies

That is, the initial guess for the algorithm is P20(t) = 1, and then P2n(t) =
1 + an t 2• Thus for k = 2 the algorithm generates the sequence

(3.5)



THE INITIAL VALUE PROBLEM 7
'.L

The table below compares the two approximation problems (3.3) and (3.4)
for various values ex.

ex2 SAS BAS

1.44 1 + 0.23148t 2 1 + 0.23148t 2

2.2 1 + 0.33435t2 1 + O.16325t 2

2.7 Does not exist 1 + O.04115t 2

Thus the sequence (3.5) converges to P2(t) = 1 + O.23248t 2for cx2 = 1.44
and SAS = BAS; for ex2 = 2.2 the sequence (3.5) converges to plt) =
1 + 0.33435t2 but SAS does not equal BAS; finally (3.5) does not converge
for ex2 = 2.7, nor does any subsequence of (3.5) converge, and consequently
no SAS exists.

Thus in general, one might expect that the algorithm may not converge
on the entire interval of definition of the IVP (1.1), but rather on some
smaller interval. Also it might be anticipated that the SAS and BAS of degree
k may be equal on a sufficiently small interval.

4. THEORY OF THE ALGORITHM

In this section we first consider the existence of a SAS of degree k. It is
assumed that f is a real-valued function from I X R2 into R, where
I = t-a, a), ex ~ a, and R represents the set of all real numbers.

SincefE C[I X R2], IJ(t, x, x)1 :(: M = M(R) whenever (t, x, X)E I X R2
and max(l x I, Ix [) ~ B. For U E CI[!), define I: u(tYII = max(l u(t)1, [lift)!),
and let poet) = Co + CIt, tEl.

HI' Let B ;;0 1 + maxlli Po Ill)' Choose Ia to ensure for allt E Ia that

Mmax(2 it I, t 2
) ~ 1.

If I a is the maximal interval in I satisfying HI , then for all ex ~ iX, I a also
satisfies HI .

Let

Then Sk is a compact, convex subset of P k • We now define an operator ~,

on Sk.
For x E CI[Ia ), let

F(x](t) = jet, x(t), x(t)). (4.2)
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The set of all polynomials of degree at most k - 2 is denoted Qk-2 . If

inf II v - F[p]ll" = II v - F[p]ll" ,
vEQk_2

(4.3)

then q(t) = poet) + f~ (t - s) v(s) ds is in Pk . Finally, if p E Sk' define Tk
on Sk by TkP = q. In this case, (d2jdt2)[TkP] = v, the best approximation
to F[p] on I" from Qk-2 .

THEOREM 1. The mapping Tk is a continuous mapping from Sk into Sk .

Proof Let pESk . Then from the remarks below (4.3), TkP = q implies

inf II v - F[p]ll" = II q - F[p]II" ,
VEQk_2

where q E Pk • Let
q(t) - F[p](t) = e(t).

Equalities (4.4) and (4.5) imply

II e II" ~ II F[p]II".

(4.4)

(4.5)

Since p E Sk , HI implies that [I F[p ]11" ~ M, and consequently, [I e [I" ::s:; M.
From (4.5),

q(t) ~ poet) = rF[p](s) ds +re(s) ds
o 0

and

t Jtq(t) - poet) = J (t - s)F[p(s)] ds + (t - s) e(s) ds.
o 0

These two equations imply that

II q(t) - Po(t)[II ~ Mmax(21 t I, t 2),

and consequently q E S". Now let € > 0 be given. If p E Sk' the classical
Freud Theorem [2, p. 82] implies for any pES" that

(4.6)

Since f is uniformly continuous on compact subsets of I X R2, there exists
a °> 0 such that if II p - p II" < 0, then

_ 2 €
II F[p] - F[p]ll" < -2\-'

ex I\p
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This implies II TloP - Tlo PIia < E, and consequently, Tlo is a continuous
mapping from Slo into Slo' k ?;: 2.

COROLLARY 1. The mapping Tlo has a fixed point in SIc, k ?;: 2.

Proof Since Slo is a compact, convex subset of Qlo the result follows from
Theorem 1 and the Schauder fix point theorem [13, p. 25].

We summarize the results of Theorem 1 and Corollary 1. There exists
a polynomial p E Plo such that if we seek the polynomial vE Qlo-2 that best
approximates the known continuous functionF[p] on fa, then this polynomial
is just the second derivative of the original polynomialp. Hereafter, any fixed
point of Tlo is defined to be a SAS of degree k for (1.1) on fa. We have
established for each fa , 0;, ~ ex, a SAS of degree k exists for k ?;: 2.

We now examine conditions that ensure algorithm (3.2) generates a SAS
of degree k.

COROLLARY 2. Let fa satisfy HI' Then the sequence {Pkn}~o generated
by (3.2) has a cluster point Pk E Slo , k ?;: 2.

Proof Since Pko E Slo and TloPkn = Plo,n+l' the proof of Theorem
guarantees that {Pkn}~~OC Slo' Since Slo is compact, this sequence has a
cluster point Pk .

Before proceeding to the next corollary we note since {Pkn}~~o C Sk and

where M is independent of k, the sequence {II Plon I!a}~~o, is uniformly bounded
in k. Thus Corollary 2 implies the sequence {II Plo IU~~o is bounded.

By the nature of algorithm (3,2), at the n + 1 step the alternation theorem
[2, p. 75] guarantees the existence of an extremal set X n = {tin ,... , tlon} C 1a •

The sequence of k-tuples {Xn}~~o is contained in the compact set [Ia]k and
consequently has a cluster point X = {ti , ... , t lo}. Without loss of generality
we can assume the subsequences from {Xn}~~o and {Pkn}~~o that converge to
X and Pk , respectively, involve the same indices. Consider the error function

(4.7)

H2. Suppose for ti , t HI E X that

i = 1'00" k - 1.
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Remark. The point set X and Pk are computable for each k. Hence H 2

is checkable for each k. In particular, if the sequence generated by algorithm
(3.2) converges, H 2 is satisfied.

COROLLARY 3. For eachfixed k ?o 2 let Pk be a clusterpoint ofthe sequence
generated by algorithm (3.2) on Icy' , where Icy' satisfies HI . IfH 2 is satisfied by
the error function (4.7), then

Proof Let {hn(;)};:l converge to Pk . Define ekn(;) by

where (d2jdt 2)[Tkhn(j)] = h,n(;)+!' Then the remarks below (4.6) and
equicontinuity of the sequence {F[hn(;)]}}:l imply that if

and by (4.7)

i = 1, ... , k.

Consequently,

(4.8)

i = 1,... , k. But H2 and the theorem of de La Vallee Poussin [2, p. 77] then
imply that II ek IICY. ?o I ek(t;)I, i = 1,... , k. Consequently, (4.8) implies

This corollary implies· a cluster point of the sequence generated by
algorithm (3.2) is a SAS in the sense of Corollary 1. In the remainder of the
paper we assume for each k that the cluster points of algorithm (3.2) are
SAS's of degree k on Icy' •

The results above basically answer question (a) of Section 2. The next
theorem relates directly to question (c). First, a lemma involving fundamental
concepts of approximation theory is proven.

LEMMA 1. The sequence of error functions {elc(t)}~~2 defined by (4.7)
converges uniformly to zero on Icy' , ex :::;;: Ii.
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Proof. Using the notation of Jackson's theorem [12, p. 22], the con
clusion of Corollary 3 implies that II ek il~ = Ek _ 2{F[pl;]}' Thus we can infer
from Jackson's theorem that

(4.9)

where Wk is the modulus of continuity of F[Pk](t) on lex (see [12, p. 14,22]).
Let E > 0 be given. Since by Corollary 2 the sequence {Pk(t)}~~2 is uniformly
bounded, the sequences {p~')(t)}~~2' i = 0, 1 are uniformly bounded and
equicontinuous. Thus the uniform continuity of f(t, x, x) on any compact set
lex X [-N, N]2 implies that the sequence {F[Pk](t)}~~2 is an equicontinuous
family. Consequently there exists a 8 > 0 such that : t - s c« 0 implies
that

independent of k. Therefore Wk(O) c« E, independent of k. If K is large enough
to ensure that for k :? K, cx/(k - 2) c« 0, then because of the monotonicity
of WI;'

Thus for all k :? K,

Inequality (4.9) then implies for all k :? K, iI ek c« 6E. Consequently
limk_>x II ek = 0.

As previously mentioned, the next theorem of this section basically answers
question (c) of Section 2. It is of interest to note that this theorem is also an
existence theorem for the IVP (1.1), proven via techniques of approximation
theory.

THEOREM 2. Let the f of IVP (1.1) be as described above H l ' and suppose
cx c« &. Then there is a function yEO C2 [1] and a subsequence {Pk(j)}~l of the
sequence {Pk}~~2 of SAS's satisfying

lim II p~ij) - yU) ll~ = 0,
J~CO

i = 0.1,2.

Moreover, y is a solution to the IVP (1.1) on In; .

Proof Again the sequences {p~)(t)}%'~2' i = 0, 1 are equicontinuous and
uniformly bounded on lex. The Ascoli theorem implies there exists sub
sequences {pL?j)}~~l such that these sequences converge uniformly on fa to
yUI(t), i = 0, 1, respectively. Then (4.7) implies that



76 HENRY AND WIGGINS

An application of Lemma 1 establishes that

limpk(j) = F[yJ(t).
J->'lJ

But this implies that y exists and

lim II PkU) - Y II~ = 0,
J->OO

and consequently (4.10) implies that

yet) = j(t, y(t),y(t)).

(4.10)

Since each Pkw E Pk(j) , yeO) = Co and yeO) = C1 , and the proof is complete.
In this section questions (a) and (c) were considered in detail. The next

section is devoted to at least partially answering the somewhat more difficult
question (b).

5. A COMPARISON OF BAS AND SAS

The proof of the main theorem of this section establishes for some
functionsfand for ex ~ ex and sufficiently small, the BAS and SAS of degree k
are each unique and they are equal. For this proof the functionf of (1.1) is
restricted as follows.

Condition Q. (i)

jet, x, x) = L Gi(t) Xi + L b;(t)(xY
i~l i~l

+ L L Cij(t) xi(xY + h(t),
i~l j~l

where Gi , bj , C ij , and h are polynomials.

(ii) IfPk is a SAS of degree k, then F[PkJ 1 Qk-2 .

If (i) is satisfied, then reference [4J guarantees that for each k a BAS exists
on flY. • Although condition (i) is restrictive, condition (ii) is generally not a
significant additional restriction, since evaluating the fin (i) at (t, Pk(t), Pit)),
t E f rt , would ordinarily result in a polynomial ofdegree strictly greater than k.
Condition (ii) is needed in Lemma 4 below.

The first theorem of this section is preceded by two lemmas involving
classical ideas of approximation theory.
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LEMMA 2. Ifpet) is any polynomial of degree at most n, then

I' (m+ll [' ~ n2(n - 1)2 ... (n - m)2 I' Ii
,iP l~ ~ (Xm+l lP",·

77

(5.1)

This result is a direct consequence of Markoff's inequality; see [2, p. 94,
Problem 4J.

LEMMA 3. For each polynomial p(t) = Co -+- L~~l cit i , 1= [-1, IJ,

max{1 Ci I: i = 0, 1, ... , n} ~ ([(n ~11)/2J) n! Ii p (5.2)

where il P = maxI! p(t)I.

Proof. Each Ci = p<i)(O)/i! , i = 0, 1, ..., n. Thus

: . I ~ 1-
1

, (i) II ~ n2(n - 1)2 ... (n - i -+- 1)2 P
, c~ ~ i! IP ~ i!

by the previous lemma. But

(5.3)

i = 0,1,... , n,

and consequently, inequality (5.3) implies that

I .1 ~ ( n )! Ii 'I
i c~ ~ [en + 1)/2] n. IP " i = 0, 1, ... , n.

We note (5.2) is true for the constant polynomialp(t) = Co if we adopt the
convention that (g) = 1.

THEOREM 3. Suppose that the f of IVP (Ll) satisfies condition Q. For
(X ~ ex, let h(t) and h *(t) be the SAS and BAS of degree k for the IVP (Ll)
on the interml l~ . Then there exists a constant N such that for all (X ~ ex,

1'1 F[p J - F[p *]11 ~ N max {II p(i) - p*(i)
k k I '" ~ i~O,l l I' k

(5.4)

Proof. The remarks following the proof of Corollary 2 imply the sets
{II h . (X ~ ex} and {II Pk 11.,,: ex ~ ex} are contained in an interval [-N1 , N I ]

independent of c/. We now show that a similar result is valid for the sets

and (5.5)
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oit) = Pk*(t) - F[Pk*](t).

Then since Pk* is a BAS for each k on lex, it is clear that the set
{II Ok Ilex: ex ~ ti} is bounded.

But

Thus condition Q implies that the set

{oiext): ex ~ ti} (5.6)

is a uniformly bounded family of polynomials defined on the interval [-1, 1].
IfPk*(t) = Co + cIt + a2*t 2 + ... + ak*t lc, then

oiext) = 2a2* + 6a3 *ext + + k(k - 1) ak*exk- 2t k- 2

- f(ext, Co + clext + + ak*exktk, CI + 2a2*ext + ... + kak*exk-It lc - I).

We note since each BAS depends on the interval lex, each ai* may depend on
a.

The constant term of ok(at) is 2a2* - f(O, Co, cI ) and is bounded inde
pendent of 01. Also (5.6) implies the coefficients of powers of t are uniformly
bounded in ex. Now suppose that I a2* I, I a3* I ex, ... , I am * i exm - 2 are all
uniformly bounded in ex. A careful examination of condition Q implies the
coefficient of tm - I involves only (m + 1) ma';;+Iexm - I and coefficients already
assumed to be bounded. Thus a';;+Iexm - I must be uniformly bounded in a.
Induction thus implies the set {I ai* 1exi-2}~~2 is bounded independent of ex.

But

II P7c* Ilex = max I Pic*(ext)1
[-1,1]

~ 21 a2* 1+ 61 a3* I ex + ... + k(k - 1) I alc* I ex/H.

Consequently {Ii P7c * liex: ex ~ ti} is bounded, and this implies the sets (5.5)
are also bounded. Without loss of generality, we can assume that these sets
are also contained in the interval [-N I , NI ].

The mean value theorem and condition Q imply that if (t, x, x) and (s, y, ji)
are points of the set Sii = Iii X [-NI , N I ]2, then

If(t, x, x) - f(s, y, ji)1 ~ N max{1 x - y I, I x - ji I}.

Since the above establishes that

and (t, Pk*(t), Pic*(t)

are in Sii for every ex ~ ti, the proof is complete.
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Before proceeding to the last two theorems of this section, we state a
fundamental theorem of approximation theory and a lemma related to this
theorem. The lemma is due to Cline [3].

STRONG UNICITY THEOREM Let G = span{l, t, ... , tn-I}, fo; = [~ex, ex],
and let Po be the best approximation from G to a given continuous function f
Then there exists a constant y depending on f such that for any element P of G,

Ilf- Plio; ~ lif- Poll" + yll Po - PI".

A more general statement and proof of this theorem can be found in
[2, p. 80].

LEMMA 4 (Cline). Let G = span{l, t, ... , tn-I}, I" = [-ex, ex] and suppose
that E = {tj}~::;l is an extremal set for f - Po, where fE C[-ex, ex] and Po is
the best approximation from G to f For i = 1,2,... , n + 1, define q, E G by
q,(tj) = sgn[f(tj) - Po(tj)], j = 1,... , n + 1, j =1= i. Then the y of the strong
unicity theorem may be chosen to be

= [ max II q·li ]-1
Y l~i~n+!· ." .

(5.7)

We note the polynomials {q1 ,... , qn+!} depend on fo; and due to the form
of (5.7), it is assumed thatf¢: G.

THEOREM 4. Suppose the f of IVP (Ll) satisfies condition Q. For ex ~ Ii,
let h(t) and h *(t) be the SAS and BAS of degree k, respectively, for the
IVP (1.1) on the interval f",. Then there exists a y > 0 such that for every
(X ~ Ii,

(5.8)

Proof By the Strong Unicity Theorem, Corollary 3 and the fact thath*
is a BAS, there is a positive number y" , possibly depending on ex, such that

Y" II h, - Pk* 110; ~ !I Pk* - F[h]!I" - II he. - F[hJil"
~ ilhe.* - F[hJII" -IIPI,* - F[h*]I",·

Thus

(5.9)

Now (5.7) may be used to establish that there is a y independent of ex so that
(5.9) holds for all ex ~ Ii. In fact, Lemma 4 implies we may choose

(5.10)
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where each qi(t) is the polynomial of degree k - 2 or less that solves the
interpolation problem

qi(tj ) = sgn{F[Pk](tj ) - Pk(tj )}

= -sgn[ek(tj )], j = 1,2,..., k,

i =1= j; where again {ti , ... , tk} is an extremal set for ekCt). Thus each qi(t)
interpolates the function -ele(t)/II ek II" at the points t; ,j = 1,2,... , k; j =1= i.
A classical theorem of approximation theory (see [2, p. 60]) establishes that

II (Ie-i) II
II qi + II :':11" L~ (k ~;)! II;k il" II Wi il",

where
Ie

W/t) = I1 (t - t j ).

j~i

r"j

Condition Q implies eit) is a nonzero polynomial of degree N k or less,
so that Lemma 2 implies

Therefore

(5.11)

Let M k equal the right-hand side of(5.11). Then (5.11) implies

and consequently for all ex ~ eX,

Thus from (5.9) and (5.10),

(5.12)

is such that for all ex ~ eX,

The final theorem of this section partially answers question (b).
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THEOREM 5. Suppose the f of IVP (Ll) satisfies condition Q. For ex ~ a,
let h(t) andh *(t) be a SAS and BAS ofdegree k ~ 2for the IVP (1.1) on the
interval I" . Then there exists an ex* ~ Ii such that on I". , the SAS ofdegree k
is unique and is the unique BAS of degree k.

Proof Suppose by way of contradiction that for every ex* ~ Ii there is an
ex ~ ex * such that ifh * and h are the BAS and SAS of degree k on I" , then
h * =1= p" . From the definition of BAS it must be that

Combining the results of Theorems 3 and 4,

y II P - P * II :< N max {Ii p(i) - p*(i>
k 1.:" ~ i~O,l' I.: "

where y and N are independent of ex.
Let

and

Then for i = 0, 1,

(5.13)

lip(i) -p*(i)ff
:1 k k a:

liP" - PI.:* II~

(
flU + 1)(a2 - a2*) t 2- i + (2i + 1)(a3 - a3*) t 3- i + ... )

_ + [(k - l)i + Il(al.: - a7c*) tk-i II~

- II, 2(a2 - a2*) + 6(a3 - a3*)t + '" + k(k - 1)(a" - a"*) t k.,-211" •

Again we note aj and aj*, j = 2,... , k, depend on ex. Then

11 p(i) _ p*W 'I
11" "I"
liP" - P,,* II"

(
cx2

-
i(k - 1) max{(i + 1) I a2 - a2* I, )

:< (2i + 1) Ia3 - a3* I ex,... , [(k - l)i + I] I a" - a,,* I exk - 2}

~ (max[_l.lJ 12(a2 - a2*) + 6(a3 - a3*) ext +....' ) .
+ k(k - l)(a" - a"*) exk

-
2t k - 2 I

Now Lemma 3 implies

II p~) - pt(i) 11,,:< 2-i ( k - 2 ) (k I)! !Lki
II Pk - Pk* II" ~ ex .[(k - 1)/2) - . -:;; ,
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Ikki = max{(i + 1) 1a2 - a2* I, (2i + 1) I as - as* I ex, ... ,

[(k - l)i + 1] Iak - ak* I exk - 2}

and

IIp\i) _p*(i) II . k - 2
,k k "";:: 2-, ( ) (k 1) I

II Pk - Pk* II" '-':: ex [(k - 1)/2] - ..

Thus for every ex ~ cx, (5.14) implies

(5.14)

i = 0, 1,

where

Hence from (5.13),

(5.15)

But for ex small enough, this is a contradiction. Therefore, for fixed k, there
exists an ex* ~ cx such that h(t) - Pk*(t), and consequently the SAS and
BAS of degree k are equal on I"•.

We note in concluding the proof of this theorem that if ex* is sufficiently
small, the above analysis actually implies the SAS and BAS of degree k are
equal and unique on every I" , ex ~ ex*.

Theorem 5 is deficient in that the interval over which the SAS and BAS are
equal depends on k. However, the IiX over which the SAS of Corollary 1
exists is independent of k.

6. ERROR ANALYSIS AND EXAMPLES

Suppose yit) is a solution to)the IVP

x(t) = jet, x(t), x(t)) + Vk(t)

x(o) = Co , x(o) = c 1

on the interval I" = [-ex, ex], where jet, x, x) and its first partial derivatives
with respect to the last two variables are continuous on I" X R2. Assume for
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each k that Vic E C[-ex, ex], and that the sequence {II Ylc 11}?~2' is bounded.
If y(t) is the solution to (Ll) on fa , then

max {II yii) - yli) II) ~ N* II v7,;
I~O,1

(6.1)

where N* is a nonnegative constant not depending on k. The proof of this
inequality involves a standard Gronwall inequality argument.

Using Eq. (4.7) and inequality (6.1) the error estimate

max {i! p(i) _ y<il
i=O,l !; k

(6.2)

is obtained, where {PIc}?~2 is a sequence of SAS's on 1a • Also I e/, I:~ in (6.2)
is the maximum deviation that arises by employing the Remes algorithm
to obtain the SAS of degree k, see Corollary 3. Thus except for the fixed
constant N*, (6.2) provides an error estimate. Inequality (6.2) actually does
not rely on ex ~ &, and hence may be used globally (ex > ex) in the compu
tations if the data suggests that II PIc II~ is bounded for large k.

We conclude this paper with several numerical examples. A Fortran IV
program using double precision arithmetic for the SIGMA 7 computer is
utilized in the calculations.

EXAMPLE 3.

xCt) - x(t) x(t) = - tCsin 2t + 2 sin t),

x(O) = 0, x(O) = 1.

1=[-1,1]

If k = 5 approximation is from P5 = {t -+ a2t 2 + a3t 3 + a4t4 + a5t.5}.
Then Pon(t) = t + a2nt 2 + a3nt 3 + a4nt4 -.:..- a5nt S is the nth iterate of
algorithm (3.2); let A5n = (a2n , a3n , a4n ,as,,). Initially, A50 = (0, 0, 0, 0).
Further iterations yield

As! = (0, -0.16026,0,0.03365),
A 52 = (0, -0.17187,0,0.01647),

A 53 = (0, -0.16833,0,0.00953),

A.5S = (0, -0.16621,0,0.00783),

and A.5s = A.59 = A 510 • Thus the SAS of degree 5 is

P.5(t) = t - 0.16621t3 + 0.00783t.5.

The solution to this IVP is yet) = sin t, and :1 y - P511 = 0.00014. The
predicted error is II e5 11 = 0.00052, where the terminology predicted error
refers to the error estimate (6.2) with the omission of the factor N*. For this
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example Corollary 1 guarantees the existence of a SAS of degree k if
ex ~ eX = 0.11 but algorithm (3.2) actually converges for LX ~ 1. However,
convergence is faster for smaller values of LX.

EXAMPLE 4.

x(t) - 2tx(t) - 2x(t) = 0, 1 = [-0.7,0.7],

x(O) = 1, x(O) = O.

Since this is a linear IVP, a BAS actually can be computed [5]. The BAS
of degree four is

P4*(t) = 1 + 0.88746t2+ 0.74996t4.

Algorithm (3.2) finally yields P4 = PU3 = P4*. The solution to the IVP is
yet) = et2

, and II y - P411 = 0.01739.

EXAMPLE 5.

x(t) + 2(t - 2) x(t)[X(t)]2 = 0, 1= [-0.7,0.7],

x(O) = t, x(O) = 1.

The solution is yet) = 1/(2 - t). If the algorithm is initiated at k = 5,
12 iterations yield the SAS of degree five,

Ps(t) = 0.5 + 0.25t + 0.11988t2+ 0.05709t3+ 0.04250t4+ 0.02335t S,

and II y - Psil = 0.00177. In this case the predicted error is II es II = 0.01097.
Thej(t, x, x) of Examples 4-5 satisfy condition Q. The last example of

this paper is included to suggest that the algorithm may be effective in more
general circumstances.

EXAMPLE 6.

x(t) + [:~}r = -sin t(1 - tant), 1= [-1,1],

x(O) = 0, x(O) = 1.

The solution is yet) = sin t, and approximation is from Ps . Twelve
iterations of the algorithm yield the SAS of degree five;

Ps(t) = t + 0.00001t 2- 0.166249t3 - 0.00001t4+ 0.00782to.

The predicted error is II eo II", = 0.00049, and the actual error is Ii y - Poll", =
0.00010.
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7. CONCLUSIONS
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Although the nonlinear best approximation problem (3.1) has been
extensively studied in the literature, few attempts toward computation of
best simultaneous approximation solutions have been made, basically because
the approximation problem is nonlinear. The simultaneous approximation
substitute (3.2) was introduced in [10], and Sections 2-5 of this paper provide
a theory that closely relates BAS and SAS. Finally, Section 6 demonstrates
for k sufficiently large that a SAS of degree k is often a good approximation
to the solution of IVP (1.1), even when theoretical requirements are not
satisfied.
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